发文时间:2025-08-10 撰稿人:

[1] Liang JY, Li HW, Qi JL, Lu DC. A non-orthogonal elastoplastic constitutive model incorporating cohesion degradation for frozen soil. Comput Geotech. 2025, 183: 107231.

[2] Liang JY, Ma C, Su YH, Lu DC, Du XL. A nonorthogonal elastoplastic model for overconsolidated clay. Int J Geomech. 2025, 25(2): 4024345.

[3] Wang GS, Li ZH, Liang JY*, Lu DC, Du XL. A state-dependent non-orthogonal elastoplastic constitutive model for sand. Comput Geotech. 2024, 166: 105960.

[4] Liang JY, Lu DC, Du XL, Ma C, Gao ZW, Han JY. A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil. Acta Geotech. 2022, 17: 19-36.

[5] Liang JY, Ma C, Su YH, Lu DC, Du XL. A failure criterion incorporating the effect of depositional angle for transversely isotropic soils. Comput Geotech. 2022, 148: 104812.

[6] Liang JY, Shen WT, Lu DC, Qi JL. A three-stage strength criterion for frozen soils. Cold Reg Sci Technol. 2022, 201: 103597.

[7] Liang JY, Lu DC, Du XL, Wu W, Ma C. Non-orthogonal elastoplastic constitutive model for sand with dilatancy. Comput Geotech. 2020, 118: 103329.

[8] Liang JY, Lu DC, Zhou X, Du XL, Wu W. Non-orthogonal elastoplastic constitutive model with the critical state for clay. Comput Geotech. 2019, 116: 103200.

[9] Lu DC, Liang JY, Du XL, Ma C, Gao ZW. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule. Comput Geotech. 2019, 105: 277-290.

[10] Lu DC, Liang JY, Du XL, Wang GS, Shire T. A novel transversely isotropic strength criterion for soils based on a mobilised plane approach. Geotechnique. 2019, 69(3): 234-250.

访问量: 开通时间 :2020-08-27 最后更新时间 :2025-09-04